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ABSTRACT 

Solid lipid nanoparticles (SLNs) are a category of delivery systems applicable to various 

bioactive compounds in the food industry. Compared to conventional emulsions that have a 

fluidic oil phase, the mobility and release of bioactive compounds can be controlled by 

encapsulation in the solid lipid matrix with appropriate properties. Common approaches of 

preparing SLNs are high energy methods and solvent evaporation methods, which have can lead 

to degradation of compounds during processing and residues of organic solvent, respectively. In 

this thesis, a low energy approach based on the phase inversion temperature method has been 

used to prepare SLNs based on anhydrous milk fat (AMF). Food grade surfactant Tween 80 was 

used as a surfactant, and beta-carotene was used as a model lipophilic bioactive compound. AMF 

and surfactant solution with 0-1.0 M NaCl were mixed to form coarse emulsions that were 

heated at 80-95 °C [Celsius degree] for 30 min to induce phase inversion, followed by a fast 

cooling process in ice bath. The phase inversion temperature decreased from >95 °C to 73°C 

when NaCl increased from 0 to 1.0 M in the aqueous phase. Up to 10% w/w of AMF can be 

encapsulated in the system as transparent dispersions, with particle mean diameter smaller than 

25 nm. The SLN dispersions were dilution and dialysis stable, and the particle size and turbidity 

maintained unchanged during the 90-day storage at room temperature. Compared with beta-

carotene encapsulated in soybean oil-based nanoemulsion, degradation of beta-carotene in SLNs 

was much reduced. The studied SLNs may find unique applications in incorporating lipophilic 

bioactive compounds in transparent beverages. 
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ABSTRACT 

SLNs are nanoparticles that contain solid lipid cores. Like nanoemulsions, SLNs have a 

lot of advantages, for example, more stable, have better bioavailability, and have a relatively 

transparent appearance. Compared to nanoemulsions that have a fluidic oil phase, the mobility 

and release of bioactive compounds in SLNs can be controlled by encapsulation in the solid lipid 

matrix with appropriate properties. Approaches of preparing SLNs, high energy methods and low 

energy methods, and microemulsion based SLNs, have been compared and discussed in this 

review. Many factors may affect the stability of SLNs. Parameters used to characterize the 

stability of SLNs including particle size, zeta-potential, thermal and crystallization of lipids, and 

so on. In this literature review, bioactivity and bioavailability of bioactives incorporated in SLNs 

were also discussed. The studied SLNs may find unique applications in incorporating lipophilic 

bioactive compounds in transparent beverages. 
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1. Introduction 

Various delivery systems have been studied in recent years to incorporate lipophilic 

bioactive compounds for improved distribution, increased stability during processing and 

storage, and enhanced bioactivity or bioavailability 1. Oil-in-water (O/W) emulsions are 

commonly studied because the lipid core can serve as a carrier of lipophilic bioactives. 

Nanoemulsions have received extensive attention because, when compared with conventional 

emulsions that have a mean diameter in the range from 200 nm to 100 μm, the much smaller 

diameters (about 10-200 nm) of nanoemulsions offer several advantages 2. When particles are 

sufficiently small, thermal energy becomes more significant than gravitational energy. Therefore 

brownian motion is the main underlying force that cause the sedimentation due to density 

difference between the dispersed and continuous phases, which extends the shelf-life 3. Unlike 

the turbid appearance of conventional emulsions, nanoemulsions are usually translucent or 

transparent, due to the much reduced ability of nanoparticles to scatter visible light. As delivery 

systems, studies have shown the enhanced stability and bioavailability of bioactive compounds 

like beta-carotene, polymethoxyflavones, resveratrol, curcumin, and dibenzoylmethane after 

encapsulation in nanoemulsions 4.  

However, nanoemulsions have several limitations. For example, they are often stable 

only under a particular set of conditions and may be disintegrated upon dilution 5. Like 

conventional emulsions, coalescence and Ostwald ripening can result in the destabilization of 

nanoemulsions. When used to encapsulate compounds that can be degraded by environmental 

factors such as oxygen and light, the liquid state of the lipid core allows the diffusion of 

compounds to oil droplet surfaces where many degradation reactions occur, which is more 
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problematic for nanoemulsions because the small dimension of nanodroplets reduces the time 

scale to diffuse to droplet surface and provides a large surface area for reactions 6.  

Solid lipid nanoparticles (SLNs), possessing a solid lipid core, offer unique features 

overcoming some limitations but still maintain the advantages of nanoemulsions with a liquid 

core. Bioactive compounds in the solid lipid core have limited mobility and therefore lowered 

rate of diffusion to the particle surface 7. This can reduce the degradation of bioactive 

compounds by reactions such as exchange oxidation and therefore increase the chemical stability 

(Figure 1.1.). The protective properties of the incorporated active compounds of SLNs have been 

demonstrated for co-Q10 8. Finally, the solid state of lipid core can limit coalescence to improve 

physical stability during shelf-life storage. In this chapter, methods of preparing SLNs are 

discussed, followed by typical parameters used to characterize SLNs, before advancing to 

reviews about incorporation and release properties of bioactive compounds. Factors affecting the 

stability of SLNs, including physicochemistry of lipids and surfactants and preparation 

condition, are also discussed. 

 

2. Preparation of SLNs 

Various methods have been developed to prepare SLNs. Most techniques established to 

prepare nanoemulsions, high energy methods and low energy methods, can be used to prepare 

SLNs. In addition, SLNs can be manufactured by forming thermodynamically stable water-in-oil 

microemulsions at a temperature corresponding to the liquid state of lipids, followed by cooling 

to solidify the lipid core 2. The choice of a preparation method depends on the properties of lipids 

and surfactants to be used and the applicability to bioactive compounds to be encapsulated.  
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2.1. High energy emulsification methods 

The most common methods used to prepare SLNs are high energy methods, similar to 

those employed to prepare conventional nanoemulsions 9. Coarse emulsions are initially prepared 

and a mechanical device is then used to generate intense forces to disrupt the large oil droplets to 

fine ones. The established high-energy devices include high pressure homogenizers, 

microfluidizers, and high power sonication systems.  With respect to the melting temperature of 

lipids, high energy methods can be classified as being either melt (hot) and cold ones.  

2.1.1. High pressure homogenization (HPH) method 

HPH is a suitable method for preparation of SLNs. This method generates a disrupt force 

through a high pressure, and then the very high shear stress and cavitation forces disrupt the 

particles to very small size 10. Steps of preparing SLNs using melt and cold homogenization 

methods are summarized in Figure 1.2. 9.  

In melt, or hot, homogenization, bioactive compounds are dissolved or dispersed in melt 

lipid(s) first, and the hot lipid phase is mixed with a hot aqueous surfactant solution and stirred to 

form a coarse emulsion. The quality of coarse emulsion can significantly affect the quality of a 

final product. The coarse emulsions are then fed to a high pressure homogenizer and processed to 

fine nanoemulsions at temperatures above the melting point of lipids. SLNs are finally produced 

by cooling the nanoemulsions under controlled conditions 11. The diameter of SLNs processed 

using this method is about 80-300 nm, depending on chemistry and concentration of surfactants 

and lipid phase, temperature, and the pressure and number of passes during homogenization 12. 

The average size of SLNs may be increased by lipids by using higher melting temperatures and 

higher lipid concentration 13. In general, the higher the temperature used in HPH, the smaller the 
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particles size can be obtained 14. This occurs because high temperatures decrease the viscosity of 

the dispersed phase 15.  

The hot HPH method is an effective approach to decrease particle size when preparing 

SLNs. However, its high temperature and shear stress have been assumed to be the major cause 

of free radical formation, which can cause the degradation of incorporated drug 15. When a 

bioactive compound is extremely temperature-sensitive, cold homogenization technique may 

become a more viable option 12b. To support, there are also studies reporting the activity of 

peptides did not change after cold homogenization 16. In this approach, lipids are heated and then 

mixed with bioactive compounds, followed by cryo-processing in liquid nitrogen or dry ice. The 

frozen mixture is then milled to reduce dimension, followed by its dispersal in a cold surfactant 

solution and subsequent HPH treatment to form SLNs 17. Besides reducing the degradation of 

encapsulated compounds, cold homogenization has two addition advantages. First, it can prevent 

the formation of super-cooled melts that are liquid lipids at temperatures below the 

crystallization point. Super-cooled melts formed due to the small particle dimension and the 

effect of surfactant(s). This is because lipids are precooled to form solids before HPH. Second, 

cryo-processing solidifies the melt rapidly, which results in a homogenous distribution of 

bioactive compounds in the lipid phase and avoids the expulsion from the lipid core as observed 

in melt homogenization 18. Effects of HPH on the structure of SLNs and encapsulated 

compounds are discussed in greater details below. 

2.1.2. Combination of high shear homogenization and ultrasonication methods 

High shear homogenization and ultrasound methods are other high energy methods that 

can be combined to prepare SLNs at a temperature above the melting point of lipids. Both 
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methods are well developed and easy to handle. However, metal contamination due to ultra-

sonication is a potential problem 19. Typically, a coarse emulsion is first prepared with an 

ultrasonic instrument, and high speed stirring is used to further reduce particle size 20. It was also 

reported that a higher shear rate during homogenization did not significantly change particle size 

but decreased the polydispersity index of emulsions 21. In another study, Sliva et al. 22 compared 

risperidone SLNs prepared by hot HPH and ultrasound technique. The authors did not observe 

significant difference in the dimension and shape of particles prepared by the two methods. 

SLNs produced by HPH however demonstrated better physical stability and a higher drug-

loading capacity. 

2.1.3. Supercritical fluid extraction methods 

A novel supercritical fluid extraction of emulsions (SFEE) method has also been 

developed to produce SLNs to encapsulate drugs 23. This method is based on the principle that 

supercritical fluids can extract an organic solvent from a pre-formed lipid dispersion 24. A carrier 

lipid and a lipophilic drug are first dissolved in chloroform, which is then mixed with an aqueous 

phase with surfactants. The coarse emulsion can be processed to fine oil droplets by HPH. The 

fine emulsion is then sprayed into a continuous extraction chamber for extraction by a counter-

flow supercritical carbon dioxide (Figure 1.3.). SLNs with a narrow size distribution and a mean 

diameter below 30 nm were reported, and the residual solvent content in the final dispersion was 

consistently low (below 20 ppm). For food applications, the organic solvent may be adopted for 

generally-recognized as safe ethanol and others that can be used as processing aides. 
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2.2. Low energy emulsification methods 

In low-energy approaches, the formation of tiny oil droplets within oil-water-emulsifier 

mixture systems is spontaneous when the composition or environmental conditions are altered 2. 

In the solvent evaporation method, lipids and the compound to be encapsulated are first 

dissolved in an organic solvent such as ethanol and acetone. After formation of a coarse 

emulsion, the organic solvent is evaporated, e.g., at a temperature above the melting point of 

lipids, to reduce the particle size, followed by cooling to form SLNs 25. The approach has also 

been used to prepare W/O/W SLNs 26. A problem of this method is the low concentration of 

lipids in preparation, because a limited concentration of lipids can be dissolved in the organic 

solvent. The organic solvent residue is another limitation for food applications. 

Theoretically, all low energy approaches used to prepare nanoemulsions can be used to 

prepare SLNs by adopting a cooling step. For example, the phase inversion temperature method, 

which involves a heating step and another cooling process, may be adopted to prepare SLNs. 

However, these low energy methods are not well studied for the preparation of SLNs. 

2.3. Microemulsion-based SLNs 

Besides adopting techniques used to prepare nanoemulsions, SLNs can be developed 

from microemulsions. Principally, warm microemulsions are first prepared with a melt lipid 

core, followed by dilution into cold water under stirring to solidify the lipid core in order to form 

SLNs. The diluted emulsion can be concentrated by ultrafiltration or freeze drying 27. 

Microemulsion-based SLNs preparations do not involve high energy to reduce the particle size, 

which is adventages to sensitive bioactive compounds. However, a high surfactant concentration 
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is required to prepare microemulsions, and the final process of concentrating SLNs may promote 

the aggregation of SLNs and thus affect their dimension 28.  

3. Factors affect stability of SLNs and their measurements 

Stability of SLNs system is affected by many factors, including chemical and thermal 

properties of lipid phase, type and amount of surfactant, and preparation and storage conditions, 

which will described below. To characterize the effects of these factors, particle size, zeta 

potential and other measurements are used. The adequate characterization of these parameters of 

SLNs is also significant to control the quality of product. 

3.1. Particle size 

Particle size affects both the stability and appearance of colloidal systems. Typically, 

colloidal systems with small particle size are more stable and have clearer appearance 29. For 

example, delivery systems with particle diameters less than 60-80 nm are transparent but become 

turbid or opaque at larger particle size 30. Thus, optical clarity can be used to characterize the 

stability of systems with small particles 5. Many factors affect the dimension of SLNs. The 

choice of lipid(s) is one of the key parameters in controlling the properties and structure of 

SLNs. For example, the average size of SLNs can be decreased by lipids with higher melting 

temperatures 13a. This is due to the higher viscosity of lipid core during hot homogenization. 

Increasing the lipid content also increases particle size and broadens the particle size distribution 

13b. 

In emulsion systems, surfactant type and concentration also have a great effect on particle 

size and storage stability. Surfactants decrease interfacial tension and provide sufficient repulsive 

interaction forces to prevent flocculation and coalescence. For SLNs, especially thosed formed 
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by melt methods, the effect of emulsifier is of the same importance to properties of SLNs as to 

nanoemulsions. For tripalmitin SLNs prepared using melt HPH method 31, when stored at a 

temperature lower than 20 °C, gelation of SLNs stabilized with modified starch was retarded 

compared with those coated with Tween 20. This is due to the formation of a thick polymeric 

layer around the lipid particles that inhibited partices from aggregating. But the gelation would 

still occur eventually for SLNs coated with modified starch. While when stored at 37 °C, SLNs 

coated with Tween 20 showed a longer stability against aggregation and gelation, which may due 

to the not fully crystallized lipid core compared with the fully crystallized lipid core of modified 

starch coted SLNs. 

Other preparation conditions may also affect the physical stability of SLNs. SLNs with 

Compritol 888 ATO as lipid carrier were prepared using hot HPH method 32. The energy 

introduced to this system (temperature, light) led to particle size growth and gelation, also to an 

increase in zeta potential. On the other hand, packing material (siliconized vials of glass quality) 

did not show pronounced effect on the stability of SLNs.  

Dynamic light scattering (DLS) is the most commonly used method to measure particle 

size of colloidal systems. In DLS, the fluctuation of the intensity of the scattered light, due to the 

Brownian motion of particles, is measured 33, and the hydrodynamic radius of individual 

particles can be determined via the Stokes-Einstein equation 34. The hydrodynamic radius of a 

dispersion can be obtained as the average of individual hydrodynamic radii after weighing their 

scattered light intensities 35. This method can be used to measure particles with a dimension from 

several nanometers to about 3 micrometers 9 but is inappropriate for larger particles.  
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However, it should be noted that DLS does not measure particle size directly and the 

assumption of “infinite dilution” 33 is difficult to fulfill. Therefore, additional techniques are 

recommended to complement DLS studies, for example, scanning electron microscopy (SEM), 

transmission electron microscopy (TEM), and atomic force microscopy (AFM). The advanced 

microscopy techniques provide not only particle dimensions but also additional information such 

as particle morphology.  

3.2. Surface charge  

Many polymers used to prepare emulsions, for example, proteins and polysaccharides, 

are charged. Information of the electrical charge of particles in a delivery system is of great 

importance. Particle charge affects interpartilce against aggregation, binding with biological 

surfaces, and interactions with other ingredients in a food matrix 29b. 

Surface charge properties of SLNs are important to the stability because of their 

significance on the long-range electrostatic repulsion between SLNs. Surface charge of a 

colloidal system is usually measured for zeta potential. Generally, dispersions with a zeta-

potential magnitude higher than 30 mV are physically stabilized by electrostatic repulsion alone 

36. A zeta-potential as low as 8-9 mV in combination with a steric stabilization was also reported 

to stabilize SLNs in artificial gastrointestinal media 37.  

3.3. Crystallization and thermal properties 

Lipids used to prepare SLNs include triglycerides (e.g. tristearin), partial glycerides (e.g. 

Imwitor), fatty acids (e.g. stearic acid), steroids (e.g. cholesterol), and waxes (e.g. cetyl 

palmitate) 38. Thermal properties and crystalline characteristics of bulk lipid and prepared SLNs 

are of great importance, because these parameters are strongly correlated with the incorporation 
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and release rates of bioactive compounds 39. The melting point of core lipid also influences the 

preparation temperature, the cooling temperature, and cooling rate in the melt HPH method. The 

lipid composition may also affect loading parameters 7, 13b. 

Crystallization behavior of lipids in SLNs is different from bulk lipids. The solidification 

temperature of lipid core in SLNs may be lower than that of the bulk lipids 9. Nanoparticles 

prepared from bulk lipids that are solid at room temperature can exist as super-cooled melts at 

room and even refrigeration temperatures over several months 40. Thus, some nanoparticles 

prepared from lipids that are solid at room temperature may not be considered as SLNs due to 

the present of super-cooled melts at room and refrigerator temperature.   

The main reason of formation of supercooled melts is the nano-scale size of SLNs. The 

presence of nuclei is a prerequisite of crystallization 41, and the formation of a sufficient number 

of nuclei is less possible in nanoparticles. Besides the small size of nanoparticles, surfactants 

play an additional role in controlling crystallization process because the number of lipid 

molecules interacting with the hydrophobic emulsifier tail groups can be large enough to 

modulate the crystallization properties. Thus, surfactant chemistry can affect both melting point 

and melting enthalpy of lipids 42. Saturated phospholipids can increase the crystallization 

temperature, thus promote crystallization of SLNs at a higher temperature during cooling 

process42. Egg lecithin was also reported to induce crystallization at higher temperatures than 

soybean lecithin 43.  

The lipid composition also determines polymorphisms of lipid crystals (Figure 1.4). The 

β-form crystals are thermodynamically more stable than the α-form crystals and have the highest 

melting point 13b. Lipids tend to transform from α to β polymorphic form during storage. This 
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transformation of the lipid crystal leads to an overall morphological change of the lipid particles 

from a spherical to a needle-like shape, which increases the total surface area. During the 

transformation, non-polar lipid surfaces are exposed to water, which, if surfactant present is 

insufficient, can causes aggregation of lipid particles to reduce the unfavorable contact between 

oil and water 
44. As described above, this process can cause precipitation or gelation after certain 

storage period. To prove this mechanism, additional surfactant was added to the aqueous phase 

prior to crystallization of the lipid phase but after the homogenization 45. In this way, droplet size 

was maintained because additional surfactant can interact with the newly formed surfaces during 

transformation of crystal polymorphisms, and the SLNs dispersions remained fluid-like, 

contrasting with the gel formation of the control group.  

Chemical properties of surfactant, lipid phase, and preparation conditions all have an 

effect on the polymorphic transition behavior of lipids. Mixing tripalmitin with medium chain 

triglycerides or short chain lipid (orange oil) can slow the transition process and improve the 

stability of SLNs against particle aggregation and gelation 31. The lipid transition would also 

related to surfactant type used. SLNs prepared form high melting surfactants (high melting 

lecithin and Tween 60) had a higher α crystal fraction than SLNs prepared form low melting 

surfactants (low melting lecithin and Tween 80) 46. The polymorphic transitions of triglycerides 

can be slowed by the presence of saturated lecithin as emulsifier 43. When preparing SLNs with 

hot HPP approaches, cooling and heating conditions are important parameters to control crystal 

structure. Figure 1.5 shows the effect of cooling conditions on crystal structure. The α-form 

crystals are formed around 43 ℃ while β-crystals are usually formed around 61 ℃ 34. When 

cooling speed changes, the crystal type formed can also change. A fast cooling rate favors the 

formation of α crystals and helps to maintain the spherical structure of SLNs and thus is 
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preferred for the stability of SLNs. Heating and cooling rates also affect the transition of SLNs 

from α to β polymorphic forms, which is related to particle aggregation and gelation. A fast 

cooling rate decreases the gelation temperature during cooling, while a fast heating rate increases 

the gelation temperature during heating. Fast cooling and heating rates also decrease coalescence 

enthalpy, but favor the formation of supercooled melt. Thus, careful selections of cooling and 

heating rates are required to form stable SLNs suspensions 47.  

Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) are widely used to 

investigate the structure of lipids. In DSC, thermal properties are measured based on the fact that 

lipid structures formed at various conditions possess different melting points and melting 

enthalpies. Conversely, XRD can used to study the existence and type of crystalline structures 48. 

These two methods are usually combined to determine the melting point, melting enthalpy, 

crystal type, crystal transformation and solid state of lipids in SLNs 49.  

4. Release and bioavailability of bioactives incorporated in SLNs 

Many SLNs systems have been developed for topical applications, oral administration 

and parenteral administration of bioactives, listed in Table 1. SLNs systems developed for food 

applications are rare compared with SLNs for pharmaceutical and cosmetic applications. 

However, many drugs are loaded in SLNs using food grade lipids and emulsifiers (lecithin, 

Tween, and so on) 12c, which can be used to guide studies targeted for food applications. Physical 

stability of SLNs and stability, incorporation, release, and bioavailability of drugs loaded in 

SLNs are significant parameters to be considered to study these systems.  

Three types of SLNs have been developed to incorporate active ingredients: homogenous 

matrix model, drug-enriched shell model, and drug-enriched core model (Figure 1.6.) 50. These 
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models are due to the partitioning of drug between lipid phase and aqueous surfactant phase 

during particle formation. The homogenous matrix model is thought to be formed when applying 

a cold homogenization method or when incorporating very lipophilic drugs, while the other two 

models are obtained due to phase separation and fast precipitation of drugs during the cooling 

process, respectively 18. When producing SLNs by hot methods, drugs are first loaded in melt 

lipids and tend to partition to the aqueous phase. When temperature rises or when surfactant 

concentration increases, the solubility of drugs in the aqueous phase increases, resulting in the 

increased drug partitioning to the aqueous phase. During cooling, the solubility of drugs in the 

aqueous phase decreases and drugs start to repartition to the lipid phase. When temperature 

reaches the recrystallization temperature, a solid lipid core starts to form, incorporating drugs 

with an amount depending on the solubility of drugs. Upon further cooling, drugs can continue to 

partition to the lipid phase but the already-solidified lipid core cannot incorporate anymore 

drugs, forming the outer shell rich in drugs. Lastly, SLNs with a drug-enriched core are formed 

when the drug precipitates before lipids. This can occur in the case when dissolving a drug in 

lipid melts close to its saturation solubility. If drugs supersaturate in the lipid phase during 

cooling and crystallize before the lipids recrystallize. Further cooling leads to further 

crystallization of drugs until reaching the recrystallization temperature of lipids. In the final 

stage, a solid lipid shell forms around the solid core, resulting in SLNs with drug-enriched core 

12b.  

The properties of drugs being released from SLNs are a function of SLNs structures. 

When drugs are mostly in the shell (Figure 1.6), burst release is commonly observed 19; 51. In 

contrast, a prolonged release can also be achieved by forming SLNs with drug-rich cores or a 

homogenous structure 11a, 52.  
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Particle size (surface area) of SLNs greatly affects the extent of burst release 19, 50. 

Reduced burst release was observed with an increase in particle size, and a prolonged release can 

be obtained when the particle size is sufficiently large 17. In the drug-enriched shell model 

(Figure 1.6.), the drug in the outer shell has a relatively short distance of diffusion, resulting in a 

burst release. This was demonstrated for nisin encapsulated in SLNs, showing a high percentage 

of release in the first day but a prolonged release through the 25 day period 53. This enabled the 

antibacterial activity against Listeria monocytogenes and Lactobacillus plantarum for up to 20 

and 15 days, respectively, which was much longer than only the one and three-day activity for 

free nisin 53.  

During storage, α and β' type crystals can transform to more stable, ordered β type 

crystals 13b. The formation of highly crystallized lipid with perfect lattices can lead to drug 

expulsion and formation of drug crystals in the aqueous SLNs dispersions, resulting in increased 

drug degradation 58. To avoid drug exclusion, increase drug incorporation, and prolong drug 

release, lipid cores with multiple components can be adopted to increase the distance between 

fatty acid chains of the glycerides and decreases the perfectness of crystals. Hard fat is a mixture 

of partial glycerides and liquid fractions. SLNs based on hard fat tend to form the less structured 

lipid core that increases drug inclusion and avoids drug expulsion 54. This occurs because the 

impurities of lipids can retard the recrystallization process. A mixture of solid and liquid lipids 

can lead to more imperfections in the crystal, and thus can increase drug loading 55. Some 

researcher also call this kind of delivery systems nanostructured lipid matrices (NLC) 12b, which 

are solid but not crystalline. In general, the solubility of drugs in the lipid melt is higher than that 

in the final solid lipids. A high concentration of drugs leads to immediate drug expulsion during 

cooling process. Thus, a new SLNs type with drug-loaded liquid lipid dispersed in the solid lipid 
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core (O/F/W type) has been developed 12b, 56. An increased drug loading was observed in this 

delivery systems because of the high solubility of drug in the liquid lipid. At the same time, the 

solid lipid around the liquid core can still protect drugs from degradation, as in other SLNs 

systems. 

Other factors affecting drug release include drug chemistry, emulsifier type and 

concentration, the nature of lipid matrix, and preparation methods 51, 57. SLNs stabilized by high-

melting surfactants were observed to protect the encapsulated beta-carotene against chemical 

degradation better than those with lower melting temperatures 58. This occured because high-

melting surfactants can affect the polymorphic transition behavior of lipids to form more α-

crystals that not only improve the chemical stability but also accommodate a higher level of 

bioactive compounds 46, 58. The effects of drug chemistry were demonstrated in a study showing 

burst release of tetracaine and etomidate but prolonged release of prednisolone when these three 

compounds were incorporated in SLNs using the same production method 11a. 

The high temperature used in hot HPH method and high surfactant concentration can 

increase the burst release, which may be prevented by adopting the cold homogenization method 

18. The burst release can also be reduced by adopting a surfactant that does not dissolve drugs or 

possibly excluding surfactant in SLNs preparation.  Exceptions have also been observed. For 

example, proteins loaded in W/O/W SLNs prepared with the solvent evaporation method showed 

the reduced burst release at a higher surfactant concentration 59. This may have been caused by 

differences in SLNs structures, W/O/W in this study vs. no aqueous phase in regular SLNs. As 

for the lipid matrix, the structure can be engineered by blending medium chain triglycerides 

(liquid oils) and long chain ones (solid fat), also known as NLC 60. The controlled release can 



www.manaraa.com

 

18 
 

thus be obtained by a built-in trigger mechanism to initiate the transformation from α to β form 

crystals 55a, 56.  

The controlled release of drugs from SLNs has been studied in vitro and in vivo. For 

rifampicin, isoniazid, and pyrazinamide incorporated in SLNs using an “emulsion solvent 

diffusion” method, drug concentrations were maintained in the plasma for 8 days and in the 

organs for 10 days following the oral administration to mice. This contrasted with free drugs that 

were cleared in 1-2 days 25a. When tested for mice infected by M. tuberculosis H37Rv, delivery of 

drugs using SLNs reduced the dosing frequency 25a. A SLNs formulation of compritol for 

intravenous injection also showed reduced phagocytic uptake in vitro and in vivo, corresponding 

to the prolonged circulation time 61. Small interfering RNA (siRNA) loaded in SLNs also 

showed the prolonged release both in vivo and in vitro, and the in vitro cell studies showed that 

the released siRNA maintained its activity 62. Idarubicin loaded in SLNs and in the solution form 

was administered to rats by the duodenal route or intravenously 63. A prolonged release and 

higher bioavailability were observed for idarubicin loaded in SLNs when compared to the 

solution control. For the SLNs treatment, the drug and its metabolite were observed in the brain, 

which was not observed for the solution treatment. The ability of SLNs passing the blood-brain 

barrier was also reported in others studies, which suggests that the prolonged circulation time of 

SLNs causes the accumulation in the brain but not in other organs11b, 64. This characteristic, if 

carefully controlled, can be used for the targeted delivery of drugs using SLNs.  

5. Conclusions 

SLNs are a group of delivery systems with potential for application in the food industry. 

SLNs can be prepared using many approaches that are used for conventional nanoemulsions, 
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with modifications. SLNs can also be prepared from self-assembled microemulsions. The 

physical stability of SLNs can be controlled for particle dimension and surface charge, as well as 

the structures of lipid core including the composition and type of crystals. When compared to 

conventional emulsions, the mobility and release of bioactive compounds can be controlled by 

the properties of solid matrix and thus the degradation of bioactive compounds due to exchange 

can be reduced. The release properties of the encapsulated compounds, however, are dependent 

on the exact structure of SLNs, with burst release commonly observed for the presence of the 

encapsulated compound mostly in the outer shell and prolonged release corresponding to 

compounds rich in the lipid core or distributed evenly in the lipid matrix. There are several 

problems related to the stability and controlled drug release, including lipid crystal 

transformation, super-cooled melts, drug expulsion and degradation of incorporated drug during 

processing. These problems can usually be overcome by adopting appropriate lipid 

compositions, surfactant type and concentration, and preparation conditions.  
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Table 1.1. Examples of compounds incorporated in SLNs and the surfactants and methods used 

in preparation. 

Incorporated 

drug 

Emulsifier(s) Lipid(s) Preparation 

Method 

Reference 

Tetracaine, 

etomidate, 

prednisolone 

Poloxamer 188* Compritol 888 ATO* High pressure 

homogenization 

15 

Camptothecin Soybean 

lecithin,  

Poloxamer 188* 

Stearic acid High pressure 

homogenization 

16 

Camptothecin Soybean 

lecithin,  

Poloxamer 188* 

Stearic acid High pressure 

homogenization 

67 

Doxorubicin Epikuron 200* Stearic acid Microemulsion 82 

Retinol Xanthan gum,  Campritol 888 ATO*, 

Miglyol 812* 

High pressure 

homogenization 

72, 39,  37 

Retinoic acid Soy lecithin, 

Tween 80* 

Campritol 888* High pressure 

homogenization 

36 

Idarubicin Epikuron 200* Steric acid Microemulsion 79 
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Table 1.1. Continued. 

Incorporated 

drug 

Emulsifier(s) Lipid(s) Preparation 

Method 

Reference 

Retinyl acetate, 

progesterone, 

sodium 

cromoglycate 

Gelatin, 

Polyvinyl 

alcohol (PVA) 

Cetyl alcohol, 

cholesterol, tristearin, 

monostearate 

Melt dispersion - 

solvent 

evaporation 

73 

Cyclic 

undecapeptide 

cyclosporin A 

(CyA) 

Epikuron 200* Stearic acid, Microemulsion 83 

rifampicin, 

isoniazid, and 

pyrazinamide 

PVA Steric acid Solvent diffusion 34 

Bovine serum 

albumin, 

Lysozyme, 

Insulin 

Poly (lactic-co-

glycolic acid) 

Hydrogenated castor 

oil 

Solvent 

evaporation 

79 

Small 

interfering RNA 

(siRNA) 

Lecithin, DSPE-

Polyethylene 

glycol 

Tristearin, 

DOTAP(1,2-dioleoyl-

3-trimethylammonium- 

propane 

Solvent 

evaporation 

78 
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Table 1.1. Continued. 

Incorporated 

drug 

Emulsifier(s) Lipid(s) Preparation 

Method 

Reference 

Beta-carotene High-melting 

lecithin, low-

melting lecithin, 

Tween 60*, 

Tween 80* 

Tripalmitin, medium 

chain triglycerides 

High pressure 

homogenization 

74 

Hesperetin Tween 80* Glycerol monostearate, 

stearic acid 

Sonication 84 

Nisin Poloxamer 188*, 

sodium 

deoxycholate 

Cetylpalmitate, 

Softisan 378*, Softisan 

154*, Imwitor 900* 

High pressure 

homogenization 

68 

Beta-carotene Stearic acid Lecithin, sodium 

taurocholate 

High shear 

homogenization 

85 

Retinyl 

palmitate 

Compritol 888 

ATO*, palmitic 

acid 

Phosphatidylcholine, 

cetearyl alcohol and 

cetearyl glucoside,  

Microemulsion 

based, HPH 

86 

 Compritol 888 

ATO*, palmitic 

acid 

Phosphatidylcholine, 

cetearyl alcohol and 

cetearyl glucoside, 

Microemulsion 

based, HPH 

87 
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Table 1.1. Continued. 

*Chemical structures of corresponding commercial names. 

Poloxamer 188: poly (ethylene glycol)-block-poly (propylene glycol)-block-poly(ethylene 

glycol). 

Campritol 888 ATO:  Cetyl palmitate, glyceryl behenate. 

Epikuron 200: soya phosphatidylcholine. 

Miglyol 812: caprylic/ capric Triglyceride. 

Tween 80: polyoxyethylene (20) sorbitan monooleate. 

Tween 60: polyoxyethylene (20) sorbitan monostearate. 

Softisan 378: a blend of triglycerides based on saturated even-numbered, unbranched natural 

fatty acids of vegetable origin with a chain length of C8 – C18. 

Softisan 154: a blend of triglycerides based on saturated even-numbered, unbranched natural 

fatty acids of vegetable origin with a chain length of C14 – C18. 

Imwitor 900: glycerylmonostearate, 40-55 %. 
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Figure 1.1. Comparison of a liquid nanoemulsion (left) and solid lipid nanoparticles (right) with 

respect to the stabilization of encapsulated lipophilic bioactive compounds. Redrawn based on 7. 
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Figure 1.2. Common procedures in melt and cold homogenization approaches used to prepare 

SLNs. Adapted from Mehert et al. (2001).   
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Figure 1.3. Processes used to prepare SLNs by supercritical extraction of emulsion. Adapted 

from Chattopadhyay, et al., (2007). 
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Figure 1.4. Comparison of differential scanning calorimetry patterns of bulk triglycerides and 

the corresonding nanodispersion during cooling at various rates. Green, red and blue curves 

represented cooling at 0.2 °C/min, 2.0 °C/min, and 20 °C/min respectively. The figure is adapted 

from Westesen, Bunjes, & Koch, (1997). 
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Figure 1.5. Correlations between hexagonal, cubic, and orthogonal arranges of triaglycerides, x-

ray scattering patterns, and α, β′, and β-crystal polymorphisms. Adapted from Westesen, Bunjes, 

& Koch, (1997).  
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Figure 1.6. Three models showing the distribution of active compounds in SLNs: Homogeneous 

matrix (left), drug-enriched shell (middle), and drug-enriched core (right). Redrawn based on 12b. 
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CHAPTER II 

Transparent Dispersions of Milk Fat-Based Solid Lipid Nanoparticles for Delivery of Beta-

Carotene 

 

 

 

This chapter is a lightly revised version of a paper by the same title submitted to the Journal of 

Agricultural and Food Chemistry by Linhan Zhang, Douglas G. Hayes, Guoxun Chen and Qixin 

Zhong. The use of “our” in this chapter refers to my co-authors and I. My primary contributions 

to this paper include (1) the preparation of sample, (2) the data collection and analysis, (3) the 

gathersing and interpretation of literature, and (4) the writing. 
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Abstract 

Solid lipid nanoparticles (SLNs) are possible vehicles to incorporate lipophilic bioactive 

compounds in transparent functional beverages. In this work, AMF and Tween 80 were used to 

prepare SLNs by using a phase inversion temperature method, and beta-carotene was used as a 

model lipophilic bioactive compound. The phase inversion temperature decreased from >95 C 

to 73 C, when NaCl was increased from 0 to 1.0 M in the aqueous phase. At 0.8 M NaCl and 

phase inversion by heating at 90 C for 30 min, transparent SLNs dispersions were observed at 

AMF level higher than 10% w/w, corresponding to particles smaller than ~25 nm. The SLNs 

dispersions were dilution and dialysis stable and maintained turbidity level and particle size 

during 90-day storage at room temperature. The degradation of beta-carotene encapsulated in 

SLNs was much reduced when compared with its encapsulation in the soybean oil-based 

nanoemulsion.  

 

Keywords: Solid lipid nanoparticles, phase inversion temperature method, anhydrous milk fat, 

transparent dispersion, beta-carotene, storage stability  
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1. Introduction 

There are numerous lipophilic bioactive compounds of significance to food, 

pharmaceutical, and other consumer products 1. However, low solubility and poor stability are 

two major concerns when incorporating these bioactive compounds in products that possess an 

aqueous continuous phase. Thus, a suitable delivery system is needed to physically distribute 

them in product matrices with maintained chemical stability during storage, either in the 

presence or absence of hydrophilic and lipophilic antioxidant compounds 2. 

The lipid core of oil-in-water (O/W) emulsions is commonly used to encapsulate 

lipophilic bioactive compounds. Furthermore, nanoemulsions, with droplet diameters smaller 

than about 200 nm, have the advantages of good physical stability during storage and a 

translucent or even transparent appearance 3-4. Nanoemulsions have also shown the enhanced 

bioavailability of encapsulated bioactive compounds like beta-carotene 5. If the oil body of 

nanoemulsions can be prepared from lipids present in the solid state at typical application 

conditions, so-called solid lipid nanoparticles (SLNs), the degradation of encapsulated bioactive 

compounds can be much reduced 6. This is because the solid lipid matrix reduces the mobility of 

encapsulated compounds diffusing to the particle surface where most of degradation occurs 6. A 

variety of SLN systems have been developed as effective delivery agents 7-9. But much work is 

needed to fabricate transparent SLN dispersions using low-cost and scalable processes. 

SLNs are usually formed by high energy methods such as high pressure homogenization 

above or below the melting temperature of lipids 8, 10-11. High energy methods are effective in 

reducing particle size but demand high capital and operating costs. Degradation of sensitive 

compounds during processing is another concern. Conversely, low energy methods such as those 

involving phase inversions due to changes in temperatures or compositions do not require 
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specialized equipment and high mechanical energy 3. In particular, the phase-inversion 

temperature (PIT) method has been used to prepare transparent nanoemulsions of lemon oil 12. 

Since heating lipids above the melting temperature is needed to dissolve lipophilic compounds 

before preparing SLNs, it is logical to form transparent SLN dispersions using the PIT method, 

which has not been studied. 

The phase behavior of water-oil-surfactant systems as a function of surfactant properties, 

temperature, and composition is affectively described by the hydrophilic lipophilic 

deviation(HLD, eq 1 for nonionic surfactants) 13.  

HLD = α - EON – k ACN + b S + Φ(A) + CT (T - Tref)   (1) 

Negative and positive HLD values indicate the possibility of forming O/W and W/O type 

emulsions, respectively, while a bicontinuous phase behavior corresponds to a HLD value of 0 

14. For an emulsion with a fixed composition, a fine emulsion with small particle size can be 

formed during the process of inversion between W/O and O/W emulsions due to changes in 

temperature 15-16. Partial inversion was observed for transformation of turbid coarse O/W 

emulsions of lemon oil emulsified by Tween 80 (polyoxyethylene (20) sorbitan monooleate)  to 

transparent nanoemulsions after heating at 90 C for 30 min 12. 

where α is a characteristic parameter of the lipophilic part of the surfactant; EON is the number 

of ethylene oxide groups per surfactant molecular, ACN is the number of carbon atoms in the 

alkyl tail of molecule (or equivalent); Φ(A) is a function of the alcohol (added as a co-surfactant)  

type and concentration; S is the salinity of the aqueous phase in wt% of NaCl or equivalent salt; 

T is the temperature (°C); Tref is generally taken at 25 °C; and k, b, and CT are constants 

characteristic of the surfactant type and electrolyte 13. The value of temperature coefficient CT is 

typically larger for an ethoxylated nonionic surfactant than an ionic one 17.  
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The first objective of this work was to study the formation of transparent dispersions of 

SLNs using the PIT method. AMF was chosen as the solid lipid because it is a commercially 

available dairy ingredient. Variables in SLN formation were studied for thermal treatment 

conditions, salinity, and composition. The second objective was to study the prevention of 

degradation for beta-carotene, a model lipophilic bioactive compound, when encapsulated in 

SLNs. 

2. Materials and Methods 

2.1. Materials 

AMF was kindly donated by Land O'Lakes, Inc. (St. Paul, MN). Polyoxyethylene (20) 

sorbitan monooleate (Tween 80), NaCl (purity >99.5%), ethanol, hexane, and deionized water 

were purchased from Fisher Scientific (Pittsburgh, PA). Soybean oil was a product of Kroger Co. 

(Cincinnati, OH). Beta-carotene (predominantly in the trans form) was purchased from MP 

Biomedicals, LLC (Solon, OH). Potassium persulfate, 6-hydroxy-2, 5, 7, 8-tet-ramethychroman-

2-carboxylic acid (Trolox), and 2, 2’-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) 

diammonium salt (ABTS) were products of Sigma-Aldrich Corp. (St. Louis, MO). 

2.2. Preparation of SLNs dispersions 

2.2.1. Preparation of surfactant solutions 

NaCl and Tween 80 were dissolved in deionized water at concentrations of 0-1.00 M and 

5-40% w/w respectively. The mixtures were stirred overnight to ensure complete dissolution and 

heated to 60 ℃ before use.  
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2.2.2. Preparation of coarse emulsions 

Preparation of coarse emulsions and SLN nanodispersions was investigated based on a 

PIT method detailed previously 12, with some modifications. To form a coarse emulsion, AMF 

was heated to 60 ℃ for complete melting, followed by mixing with warm (60 C) aqueous phase 

under agitation at 1000 rpm using a magnetic stirring plate. The AMF concentration in coarse 

emulsions was 1-15% w/w. For encapsulation studies, beta-carotene was dissolved in warm 

AMF at a concentration of 6.25 mM before emulsification. To compare impacts of the structure 

of lipid body (solid fat vs. liquid oil) on the stability of encapsulated beta-carotene, a control 

nanoemulsion was prepared using soybean oil at conditions comparable to the treatment using 

AMF. 

2.2.3. Thermal treatment for preparation of SLNs 

The coarse emulsions were transferred to 4 mL glass vials that were heated for 30 min in 

a water bath maintained at a constant temperature (75, 80, 85, 90, or 95 ℃) without stirring. 

After thermal treatment, these samples were first cooled at ambient conditions with hand shaking 

till a homogenous appearance, followed by quenching in an ice bath under static conditions. 

2.3. Turbidity measurement 

Turbidity of samples was measured for absorbance at 600 nm (Abs600) using a UV/vis 

spectrophotometer (Unicam, Cambridge, UK). Tween 80 solutions at corresponding 

concentrations were used as controls. 

2.4. Particle size determination 

The particle size of samples was measured by using a DelasTM Nano particle analyzer 

(Beckman Coulter, Fullerton, CA). In order to avoid multiple scattering effects, all samples were 
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diluted to an appropriate concentration in deionized water prior to analysis. The volume-length 

mean diameter was calculated as following: 

d4,3 = ∑ni di
4/∑ni di

3      (2) 

where ni and di are the number and diameter of the ith group of particles.  

2.5. Viscosity measurement 

Rheological properties of dispersions were studied with an AR 2000 rheometer (TA 

Instrument, New Castle, DE) using a Searle setup (bob outer diameter = 28 mm and cup inner 

diameter = 30 mm). After loading the sample, heating to and equilibrated at 95 ℃ for 2 min, a 

temperature sweep with a fixed shear rate of 100 s-1 13 was applied from 95 to 25 ℃ at 3 ℃/min. 

A thin layer of soybean oil was applied on the top of sample to minimize water evaporation. 

2.6. Differential scanning calorimetry (DSC) 

DSC (model Q2000, TA Instruments, New Castle, DE) was used to study melting and 

crystallization properties of AMF and SLNs during heating and cooling. The transparent SLN 

dispersion prepared with 15% AMF and 45% Tween 80 in 0.8 M NaCl as the aqueous phase was 

used to generate detectable endothermic and exothermic peaks. A sample corresponding to 5-8 

mg AMF or 15-20 mg SLN dispersion was placed in an aluminum pan and hermetically sealed. 

An empty pan was used as a reference. The thermal profile was studied by two cycles, with each 

cycle following the steps of holding at -15 C for 5 min, heating from -15 to 90 ℃ at 5 ℃/min 

and cooling from 90 to -15 ℃ at 20 ℃/min. Heat flow of the samples was recorded using the 

instrument software. 
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2.7. Atomic force microscopy (AFM) 

The shape and dimension of particles were characterized using a NanoScope IIIA 

Multimode AFM (Veeco Instruments Inc., Santa Barbara, CA). The SLN dispersion was first 

diluted to 10 ppm of AMF using deionized water. Two µL of the diluted sample was dropped on 

a freshly cleaved mica disk and dried under ambient temperature (21 C) overnight. A resonant 

frequency of about 71.0 kHz and a scan rate of 1.0 Hz were applied. Images were collected at the 

tapping mode and analyzed using the instrument software. 

2.8. X-ray diffraction (XRD) 

Crystallinity of pristine beta-carotene, AMF and beta-carotene-loaded SLNs was studied 

by XRD (Panalyticla, Westborough, MA). SLN dispersions were freeze-dried before being 

spread on the glass plate and pressed to make a smooth layer. The diffraction spectrum was 

acquired at 2°/min for a 2θ range of 5-55°. The Cu KR radiation (λ = 1.54 Å) was generated at 

30 kV and 10 mA.  

2.9. Antioxidant properties 

The antioxidant properties of the emulsions were estimated using an ABTS method 18-19. 

This method measures the relative ability of antioxidant substances to scavenge the ABTS+, 

which is referenced to Trolox, an antioxidant standard. To generate ABTS+, 7 mM ABTS and 

2.45 mM potassium persulfate were dissolved in ethanol and allowed to stand in the dark at room 

temperature overnight. The ABTS+ solution was diluted with ethanol to an absorbance of 0.70 

(±0.02) at 734 nm. Two µL of Trolox or emulsion was mixed with 2 mL of the ABTS+ solution, 

and the absorbance of the mixture at 734 nm was measured after mixing for 15 min. The 

percentage inhibition of absorbance at 734 nm was calculated and plotted as a function of 
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concentration of Trolox and emulsion. The antioxidant properties were obtained by referring to a 

standard curve established from Trolox and expressed as mM Trolox equivalents per mL. 

2.10. Quantification of beta-carotene concentration 

Beta-carotene concentration in the emulsion was determined using absorbance 20. Twenty 

µL of an emulsion sample was extracted by using a mixture composed of 2 mL ethanol and 3 mL 

hexane. After hand shaking for 2 min, the upper organic phase was collected. The remainder 

aqueous phase was extracted repeatedly until the top phase became colorless. All hexane extracts 

were pooled into a 10 mL flask and added with hexane to a total volume of 10 mL. The 

absorbance at 450 nm was measured using a UV-Visible spectrophotometer (Unicam, 

Cambridge, UK). The concentrations of beta-carotene in emulsions were obtained by referring to 

a standard curve established from standard solutions with different amounts of beta-carotene in 

hexane.  

2.11. Storage stability of SLNs and encapsulated beta-carotene 

Physical stability of SLNs 

Selected SLN dispersions without beta-carotene and the corresponding dispersions after 

dialysis treatment were stored for 90 days at ambient temperature (21 C). The dialysis of NaCl-

containing emulsions was conducted using a membrane with a molecular weight cut-off of 3500 

Da (Fisher brand, Pittsburgh, PA) which was immersed in bulk distilled water for 48 h that was 

exchanged with fresh water every 6 h. Two mL dispersions were included in 4 mL capped glass 

vials, and the Abs600 and particle size in individual vials were measured periodically using the 

methods described above.  

Chemical stability of beta-carotene 
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The stability of beta-carotene in SLNs and comparable nanoemulsions prepared with 

soybean oil was characterized for changes of both antioxidant properties and beta-carotene 

content during room temperature (21 C) storage for 16 days. Samples in 4 mL sealed clear glass 

vials were exposed to LED fluorescent light during storage. Individual vials were sampled every 

two days for assays of beta-carotene concentration and antioxidant property as above. 

Antioxidant properties of SLNs and soybean oil nanoemulsions without beta-carotene were also 

determined and used as controls.  

2.12. Statistical analysis 

All samples were prepared in duplicate. All measurements were repeated at least twice. 

Results from all measurements were reported for means and standard deviations. Significant 

differences were analyzed with a least-significant-difference (P < 0.05) mean separation method, 

assisted by using Statistical Analysis Software (V9.2, SAS Institute, Cary, NC). 

 

3. Results and Discussion 

3.1. Influence of salinity and temperature on SLNs formation 

The first group of experiments was used to study temperature and NaCl concentration 

that are important parameters of HLD (eq 1). Furthermore, based on our preliminary trials, 

emulsions with high surfactant concentrations can form gels at high NaCl concentrations during 

thermal treatments, while a low surfactant-to-oil ratio (SOR) typically results in phase 

separation. Therefore, this group of samples was prepared with 1% w/w AMF and aqueous phase 

with 15% w/w Tween 80 and 0-1.0 M NaCl. After heating at 80-95 C for 30 min and cooling to 

room temperature, the Abs600 is shown in Figure 2.1. Emulsions with NaCl concentration lower 
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than 0.4 M had no significant change in Abs600 after heating, while those containing 0.6-1.0 M 

NaCl showed significant reduction in Abs600 at a heating temperature of 85-95 C. Figure 2.1 

also indicates that a lower NaCl concentration was required to transform turbid emulsions to 

transparent ones when heated at 95 C than at 90 C. 

Figure 2.1 suggests that temperature and NaCl concentration strongly control phase inversion. 

Monitoring viscosity changes of emulsions during cooling is a convenient method to characterize 

phase behavior and determine the PIT 21-22. Figure 2.2 shows viscosities of samples during 

cooling from 95 to 35 C and the determined PIT. Using the emulsion formed from 0.80 M NaCl 

as an example, the sample viscosity was small at high temperatures. When the temperature 

decreased to about 77 ℃, the viscosity increased quickly and reached a maximum value at 65 C. 

Upon further cooling, viscosity decreased until reaching about 55 ℃, followed by an increase 

with a further decrease in temperature. Typically, there are two viscosity maxima during cooling, 

corresponding to formation of fine W/O and O/W emulsions, and the temperature corresponding 

to the lowest viscosity between the two maxima is treated as the PIT 21. For systems with a large 

water fraction (fw) as the case of the present study, the viscosity maximum above the PIT is 

usually not observed 13, possibly due to the formation of multiple W/O/W emulsions instead of 

W/O ones. The PIT of systems with high water content can be approximated by the temperature 

at which the viscosity starts to increase during cooling, e.g., 76 ℃ for the system containing 0.8 

M NaCl. As presented in Figure 2.2, emulsions containing a higher NaCl concentration had a 

lower PIT. According to eq (1), HLD is larger at a higher NaCl concentration, requiring a lower 

temperature (PIT) to reach an HLD value of zero, i.e. phase inversion. The remaining 

experiments to form SLNs were conducted at NaCl concentration of 0.8 M and thermal treatment 

of 90 C for 30 min. 
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3.2. Influence of surfactant: oil ratio on SLNs formation 

The impact of composition on SLN formation was studied for emulsions with 1.0-15.0% 

w/w AMF in the aqueous phase with 10.0-40.0% w/w Tween 80 and 0.80 M NaCl. Samples with 

low oil concentrations were transparent before heating (1, 1-3, and 1-7% w/w AMF for the 

treatments with 20, 30, and 40% w/w Tween 80 in the aqueous phase, respectively), because 

micelles of Tween 80 are capable of dissolving some lipids, forming O/W microemulsions. 

These samples remained transparent and had low Abs600 after thermal treatment. Turbid 

emulsions with 2-6, 4-10, and 8-14% w/w AMF in samples with 20, 30, and 40% Tween 80 in 

the aqueous phase, respectively, became transparent after thermal treatment, while turbid 

emulsions were still observed after heating samples with higher AMF concentrations. Some 

samples with high AMF concentrations even underwent phase separation, with creaming 

observed after 10 min. These observations are demonstrated visually in Figure 2.3A for 

emulsions with 30% w/w Tween 80 in the aqueous phase. Consistent with these observations, 

values of Abs600 and d4,3 of samples after cooling to room temperature are shown in Figure 2.4A 

and 2.4B, respectively. Generally, transparent samples are evidenced by small Abs600 (<0.1 

absorbance units) and d4,3 (< ~ 23 nm) because of the inability of small SLNs in scattering visible 

light. All samples with the lowest amount of Tween 80 (10% w/w in the aqueous phase) were 

turbid before and after heating. Sub-micrometer sized particles (<400 nm) were observed for 

samples with 8-10, 12-15, and 15% w/w AMF in the aqueous phase with 20, 30, and 40% w/w 

Tween 80, respectively. The standard deviations of d4,3 and widths of size distributions (the latter 

not shown) were large for these treatments, possibly because of the deficiency of surfactants 

required for phase inversion at the studied conditions. The high polydispersity may also play a 
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role. Conditions enabling formation of SLNs are summarized in Figure 3B for this group of 

treatments, in the form of a phase diagram. 

Our results generally agreed with those of Rao and McClements 12. In their research, 

propylene glycol was used in the aqueous phase to enhance the inversion of transparent 

nanoemulsions with lemon oil. In contrast, propylene glycol was not observed to enhance the 

formation of transparent SLN dispersions in our preliminary studies. This may be due to the 

lower solubility and higher melting temperature of AMF than those of lemon oil. 

It is worth noting that the stability of surfactant-based systems upon dilution is an 

important attribute. For the systems with lemon oil emulsified with Tween 80 12, samples 

containing relatively high surfactant concentrations after thermal treatment exhibited increased 

turbidity after dilution. The observations were attributed to the instability of microemulsion 

subjected to compositional changes. In the present study, all transparent samples remained stable 

upon dilution at room temperature. The differences between the two studies perhaps are related 

to the interface of lemon oil/water being more fluidic, while the interface between solid lipid 

core and water is more rigid in our study. Droplets composed of solid lipids also are less 

susceptible to emulsion instability mechanisms such as coalescence and Ostwald ripening. The 

structure and storage stability of SLNs are presented in following sections using emulsions 

prepared with 10% w/w AMF and an aqueous phase with 30% w/w Tween 80 in 0.8 M NaCl, 

after heating at 90 C for 30 min. 

3.3. Structure of SLNs studied by AFM and XRD 

3.3.1 AFM 

Figure 2.5A displays an AFM image of SLNs in a transparent dispersion. Particles were 

discrete and mostly spherical. When compared to particle size distribution (Figure 2.5C), particle 
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heights measured by AFM (<5 nm, Figure 2.5B) were much smaller, as reported in other studies 

23-25. The difference may be due to the underlying theory for the two methods. An assumption 

used in dynamic light scattering (DLS), “infinite dilution” 26, is hard to fulfill. If interactions 

among particles occur, common for emulsion systems, the interaction may contribute toward the 

diffusion coefficients obtained from DLS. Thus, the estimation of particle size obtained by the 

Stokes-Einstein Equation may be overestimated. Additionally, the dimension occupied by 

particles may decrease after drying the SLN dispersion for AFM. 

3.3.2 XRD 

XRD is a convenient technique not only for characterizing SLNs 27-28 but also for 

confirming the encapsulation of lipophilic compounds 29, especially beta-carotene, which is 

highly crystalline 30-31. AMF also has crystalline structures below its melting temperature 32. 

Because AMF is composed of a mixture of lipids, its crystalline structures are dependent on 

temperature and cooling rate 33-34. Figure 2.6 shows the XRD spectra of beta-carotene, AMF, and 

beta-carotene-loaded SLNs. Beta-carotene showed several sharp peaks, indicating crystallinity, 

while AMF possesses smaller and broader peaks, indicating that AMF has mixed morphology at 

room temperature. It has previously been suggested that amorphous morphology is dominant, but 

crystalline structure is also present in AMF at room temperature 35. For SLNs loaded with beta-

carotene, because Tween 80 is a non-crystalline compound at ~20 C36-38, the smooth XRD curve 

of the beta-carotene-loaded SLNs and its similarity to the spectrum of AMF suggest that beta-

carotene was embedded in SLNs 39. Detailed structures of AMF crystals however were not 

studied in the present work, as it requires temperature-controlled small angle XRD 40-42. 
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3.3.3 DSC 

Thermograms of AMF and SLNs during heating and cooling cycles are shown in Figure 

2.7. During heating, multiple melting temperatures of AMF were observed at about 8.7, 15.3, 

and 24.1 C, with the last peak extending to 36.4 C. During the subsequent cooling process, the 

crystal formation started at around 17.6 ℃ and the crystalline process of mostly oil happened 

around 5.0 °C. The two cycles of heating-cooling process do not showed any differences, 

indicating bulk recrystallization of AMF would not affect its crystal type and melting 

temperature. The DSC results of AMF agree with previous studies 43-44. Multiple melting 

temperatures suggested in Figure 2.7 are due to the fact that AMF is a mixture of triglycerides 

containing more than 400 fatty acids, both saturated and unsaturated, including oleic acid, 

palmitic acid, myristic acid, and stearic acid 45. First cycle of heating curves of SLN showed a 

strong endothermic peak at 15.3 °C. While the other two melting peak showed in the heating 

curved of bulk AMF do not present as obvious as in the heating curve of SLN. In the subsequent 

cooling cycle of SLN, initial crystal formation temperature is the same as bulk AMF. But the 

main exothermic peak happened around -3.2 °C, much lower than bulk AMF.  The differences of 

crystallization behavior of lipids in SLN agrees with previous study that the solidification 

temperature of lipid core in SLN may be lower than that of bulk lipids46. Lipids may exist as 

super-cooled melts in SLN47. The differences between first and second cycle of SLN may due to 

particle coalescence or free oil in the SLN48-49. Thus, AMF in SLN dispersion is present as a 

mixture of solid state and liquid state at room temperature (21 C) in the present study. The DSC 

(Figure 2.7) and XRD (Figure 2.6) results suggest that AMF in SLNs does not have extensive 

ordered crystalline structures but is present at the amorphous solid state, corresponding to 
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nanostructured lipid carriers that are advantageous in encapsulation when compared to SLNs 

with highly ordered crystals. 11 

3.4. Physical storage stability of SLNs 

Figure 2.8 contains Abs600 and d4,3 values of emulsions, stored at room temperature (21 

°C) for 90 days, for SLN dispersions with and without dialysis. The initial d4,3 and Abs600 of the 

emulsion with NaCl were 25.5 ± 3.0 nm and 0.13 ± 0.02, respectively. During the storage, there 

was no significant changes in the Abs600 and d4, 3 (P > 0.05), which were 25.4 ± 1.3 nm and 0.10 

± 0.00, respectively, at the end of the storage. Furthermore, dialysis did not change Abs600 and d4, 

3 of samples and their stability during storage. Therefore, the AMF-based SLN dispersions 

possess excellent physical stability during storage, which again can be attributed to the 

elimination of coalescence and Ostwald ripening due to use of solid phase lipids as the dispersed 

phase. 

3.5. Stability of beta-carotene during storage 

Figure 2.9 shows changes in antioxidant potential and concentration of beta-carotene 

loaded in SLNs during 16-day storage at room temperature (21 C). To study the influence of 

physical structures of lipid droplets on the stability of loaded bioactive compounds, an emulsion 

control was prepared by substituting AMF with soybean oil that has a similar average fatty acid 

chain length as AMF. The d4,3 of soybean oil nanoemulsion (29.8 ± 0.0 nm) was comparable 

with that of SLNs and was stable after 16 day-storage (30.3 ± 1.0 nm). The net antioxidant 

potential of beta-carotene in nanoemulsions was determined by subtracting the measured 

potential of the corresponding nanoemulsion without beta-carotene. Both net antioxidant 

properties and concentration of beta-carotene gradually decreased during storage, but the beta-
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carotene encapsulated in SLN treatment showed much slower degradation than its encapsulation 

with soybean oil. By the end of storage, about 94.8% loss of the beta-carotene concentration and 

97.4% loss of net antioxidant potential were observed for the latter system. In contrast, the 

concentration and net antioxidant potential of beta-carotene encapsulated in SLNs only 

decreased by 47.3% and 66.7%, respectively. The concentration change of encapsulated beta-

carotene (Figure 2.9B) followed the first order kinetics, as reported previously for beta-carotene 

in safflower seed oil 50. The results indicate the effectiveness of SLNs in reducing the 

degradation of encapsulated bioactive compounds during storage. 

To prove the reduced degradation in SLNs is due to the lowered mobility in the solid 

lipid phase, 0.0125 mM beta-carotene was dissolved in soybean oil or AMF and stored at 65 °C 

and room temperature (21 °C) for 16 days, and the absorbance at 450 nm was measured to 

monitor changes in beta-carotene content, with the corresponding lipids as a control. Beta-

carotene degraded much faster in melted AMF (79.0 %) than in soybean oil (28.9%) at 65 °C, 

suggesting soybean oil having better antioxidant properties. At 21 °C, beta-carotene did not show 

obvious degradation in both lipids. Since soybean oil has better antioxidant properties, it 

suggests that the amorphous solid state of AMF reduces the mobility of molecules and free 

radicals to reach similar stability as beta-carotene in soybean oil. The degradation tests in bulk 

lipids further support the conclusion that the enhanced stability of beta-carotene in SLNs is due 

to the amorphous solid state of AMF. 

In summary, the present study demonstrated the feasibility to prepare transparent 

dispersions of SLNs composed of AMF as the solid lipid dispersed phase and Tween 80 as a 

nonionic surfactant by using the PIT method. Thermal treatment conditions, salinity, and 

surfactant-to-oil ratio all played important roles in the effectiveness of transforming turbid 
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emulsions into transparent ones after heating. An increase of salinity lowered the PIT, thus 

favoring the formation of transparent SLN dispersions. A higher surfactant concentration enabled 

the incorporation of a higher amount of AMF in transparent SLN dispersions. SLN dispersions 

remained stable upon dilution and showed practically no changes in particle size and turbidity 

during storage for 90 days at 21 °C. Beta-carotene was successfully encapsulated in SLNs using 

the PIT method and had much better stability in SLNs than in soybean oil-based nanoemulsions. 

Therefore, the simple PIT method and AMF can be used to form stable and transparent SLN 

dispersions for incorporation of a variety of lipophilic bioactive compounds in functional 

beverages. 
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Figure 2.1. Absorbance at 600 nm (Abs600) of dispersions containing 1% w/w AMF and aqueous 

phase with 15% w/w Tween 80 dissolved in 0-1.0 M NaCl solutions after heating at a 

temperature between 80 and 95 C for 30 min and cooling to room temperature. Error bars are 

standard deviations from duplicate samples. 
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Figure 2.2A. The change of viscosity during cooling from 95 to 35 ℃ for an emulsion. The 

phase inversion temperature (PIT) was determined from the local minimum, as depicted. As 

shown in the inset, cooling results in the conversion of a W/O/W emulsion to an O/W emulsion. 

The emulsion contained 1% w/w anhydrous milk fat (water fraction fw =0.99) and an aqueous 

phase composed of 15% w/w Tween 80 dissolved in a 0.8 M NaCl solution.  
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Figure 2.2B. Effects of NaCl concentration on the viscosity of emulsions during cooling from 95 

to 35 ℃. Emulsions contained 1% w/w AMF and an aqueous phase with 15% w/w Tween 80 

dissolved in 0-1.0 M NaCl solutions. Values of the phase inversion temperature (PIT), obtained 

as described in Figure 2.2A, were listed in the legend. 
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Figure 2.3. Appearance of emulsions before (top) and after (bottom) heating at 90 C for 30 min. 

Emulsions before heating were prepared with 1.0-15.0% w/w AMF and an aqueous phase with 

30% w/w Tween 80 dissolved in a 0.8 M NaCl solution. AMF concentration increased by 1% 

w/w successively for samples ordered from left to right. 
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Figure 2.4. Partial phase diagram showing conditions (×100%w/w for each constituent) of 

forming microemulsions (red squares), transparent SLNs dispersions (green circles) and turbid or 

phase-separated emulsions (blue triangles) at 25 C formed by the phase inversion temperature 

method. Coarse emulsions were prepared by mixing 1-15% w/w AMF with an aqueous phase 

with 10-40% w/w Tween 80 dissolved in a 0.8 M NaCl solution and were heated at 90 C for 30 

min. 
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Figure 2.5. Absorbance at 600 nm (Abs600) of emulsions after heating at 90 C for 30 min and 

cooling to room temperature. Emulsions were prepared with 1.0-15.0% w/w AMF and an 

aqueous phase with 10-40% w/w Tween 80 dissolved in a 0.8 M NaCl solution. Error bars are 

standard deviations from duplicate samples. 
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Figure 2.6. Volume-length mean diameter (d4,3) of emulsions after heating at 90 C for 30 min 

and cooling to room temperature. Emulsions were prepared with 1.0-15.0% w/w AMF and an 

aqueous phase with 10-40% w/w Tween 80 dissolved in a 0.8 M NaCl solution. Samples that 

exhibited creaming within 10 min after thermal treatment are not plotted. Error bars are standard 

deviations from duplicate samples. 
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Figure 2.7. Atomic force microscopy topographic image with a dimension of 2 × 2 µm (A) and 

height distribution of particles along the measurement line (B). Particle size distribution of SLNs 

from light scattering is plotted in (C) for comparison. The SLNs were prepared by heating at 90 

C for 30 min using an emulsion prepared with 10% w/w AMF in an aqueous phase with 30% 

w/w Tween 80 dissolved in a 0.8 M NaCl solution.  
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Figure 2.8. XRD patterns of pristine beta-carotene (blue), AMF (red) and beta-carotene-loaded 

SLNs (black). SLNs were prepared by heating at 90 C for 30 min using an emulsion prepared 

with 10% w/w AMF in an aqueous phase with 30% w/w Tween 80 dissolved in a 0.8 M NaCl 

solution. 
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Figure 2.9. Thermograms of AMF, SLNs during two cycles of (A) heating from -15 to 90 ℃ at 

5 °C/min and (B) cooling back to -15 °C at 20°/min , shown from -10 to 75℃. 
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Figure 2.10. Changes of (A) volume-length mean diameter (d4,3) and (B) absorbance at 600 nm 

(Abs600) of SLNs dispersions, with and without dialysis, during 90-day storage at room 

temperature (21 C). SLNs prepared by heating at 90 C for 30 min using an emulsion prepared 

with 10% w/w AMF in an aqueous phase with 30% w/w Tween 80 dissolved in a 0.8 M NaCl 

solution. Error bars are standard deviations from duplicate samples. 
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Figure 2.11. Changes of antioxidant properties of beta-carotene-loaded SLNs dispersions during 

storage at room temperature (21 C), in comparison to a control with beta-carotene encapsulated 

in vegetable oil-based nanoemulsion. Error bars are standard deviations from duplicate samples. 
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Figure 2.12. Concentration changes, in natural logarithm values, of beta-carotene loaded in 

SLNs dispersions, in comparison to a control of beta-carotene encapsulated in vegetable oil-

based nanoemulsion. Error bars are standard deviations from duplicate samples. 
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Conclusions 

SLNs are nanoparticles that contain a solid lipid core and have potential applications in 

the food industry. Many approaches used to prepare conventional nanoemulsions can be used to 

prepare SLNs, including high energy and low energy methods. High energy methods include hot 

and cold HPH methods, high shear homogenization and ultrasonication methods, while solvent 

evaporation is a low energy method. SLNs can also be prepared from self-assembled 

microemulsions. The degradation of bioactives during sample preparation and possible organic 

solvent residues are concerns for food applications.  

The degradation and release of bioactives incorporated in SLNs mainly depend on the 

exact structure of SLNs with regard to the spatial distributions of the bioactives and carrier 

lipids. Burst release and faster degradation of bioactives are commonly observed when the 

encapsulated compound is mostly present in the outer shell. The prolonged release and improved 

stability of bioactives correspond to situations where bioactives are rich in the lipid core or 

distributed evenly in the SLNs.  

In this thesis, a phase inversion temperature method was used to prepared milk fat-based 

SLNs. This method only required a thermal treatment to cause phase inversion of the system. 

AMF is a mixture of more than 40 kinds of lipids with different chain lengths. The impurity of 

lipids can benefit the formation of less perfect crystals, or even amorphous solids. This kind of 

structure would increase the loading of bioactives in SLNs and thus avoid the burst release. A 

mixture of different lipids can also increase physical stability of SLNs by preventing crystal 

transformation in the later storage. A food grade nonionic surfactant, Tween 80, was used to 
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prepare the system. NaCl was added to the system to lower the PIT and therefore facilitate phase 

inversion.  

Thermal treatment conditions, salinity, and surfactant-to-oil ratio all played important 

roles in the effectiveness of transforming turbid emulsions into transparent ones after heating. An 

increase of salinity lowered the PIT, thus favoring the formation of transparent SLN dispersions. 

A higher surfactant concentration enabled the incorporation of a higher amount of AMF in 

transparent SLN dispersions. The prepared transparent SLNs have relatively small particle 

diameters (23 nm). SLN dispersions remained stable upon dilution and had consistent particle 

size and turbidity during 90 day storage at room temperature. 

Beta-carotene was used as a model lipophilic bioactive compound. Compared with 

soybean oil-based nanoemulsions, beta-carotene showed a much longer storage stability in terms 

of residual concentrations and antioxidant properties. Therefore, the simple PIT method and 

AMF can be used to form stable and transparent SLN dispersions for incorporation of a variety 

of lipophilic bioactive compounds in functional beverages. A further study may be needed to 

understand the lipid core structure in SLNs, as well as their stability in model food systems.  
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